Multiple mechanisms mediate enhanced immunity generated by mAb-inactivated F. tularensis immunogen
نویسندگان
چکیده
We have previously demonstrated that immunization with the inactivated Francisella tularensis, a Category A intracellular mucosal pathogen, combined with IgG2a anti-F. tularensis monoclonal antibody (Ab), enhances protection against subsequent F. tularensis challenge. To understand the mechanism(s) involved, we examined the binding, internalization, presentation, and in vivo trafficking of inactivated F. tularensis in the presence and absence of opsonizing monoclonal Ab. We found that when inactivated F. tularensis is combined with anti-F. tularensis monoclonal Ab, presentation to F. tularensis-specific T cells is enhanced. This enhancement is Fc receptor (FcR)-dependent, and requires a physical linkage between the monoclonal Ab and the inactivated F. tularensis immunogen. This enhanced presentation is due, in part, to enhanced binding and internalization of inactivated F. tularensis by antigen(Ag)-presenting cells, and involves interactions with multiple FcR types. Furthermore, targeting inactivated F. tularensis to FcRs enhances dendritic cell maturation and extends the time period over which Ag-presenting cells stimulate T cells. In vivo trafficking studies reveal enhanced transport of inactivated F. tularensis immunogen to the nasal-associated lymphoid tissue in the presence of monoclonal Ab, which is FcRn-dependent. In summary, these are the first comprehensive studies using a single-vaccine protection model/immunogen to establish the array of mechanisms involved in enhanced immunity/protection mediated by an FcR-targeted mucosal immunogen. These results demonstrate that multiple cellular/immune mechanisms contribute to FcR-enhanced immunity.
منابع مشابه
Utilization of Fc receptors as a mucosal vaccine strategy against an intracellular bacterium, Francisella tularensis.
Numerous studies have demonstrated that targeting Ag to Fc receptors (FcR) on APCs can enhance humoral and cellular immunity. However, studies are lacking that examine both the use of FcR-targeting in generating immune protection against infectious agents and the use of FcRs in the induction of mucosal immunity. Francisella tularensis is a category A intracellular mucosal pathogen. Thus, intens...
متن کاملTargeting of a Fixed Bacterial Immunogen to Fc Receptors Reverses the Anti-Inflammatory Properties of the Gram-Negative Bacterium, Francisella tularensis, during the Early Stages of Infection
Production of pro-inflammatory cytokines by innate immune cells at the early stages of bacterial infection is important for host protection against the pathogen. Many intracellular bacteria, including Francisella tularensis, the agent of tularemia, utilize the anti-inflammatory cytokine IL-10, to evade the host immune response. It is well established that IL-10 has the ability to inhibit robust...
متن کاملDifferential requirements for protection against mucosal challenge with Francisella tularensis in the presence versus absence of cholera toxin B and inactivated F. tularensis.
Francisella tularensis is a category A biothreat agent for which there is no approved vaccine and the correlates of protection are not well understood. In particular, the relationship between the humoral and cellular immune response to F. tularensis and the relative importance of each in protection is controversial. Yet, understanding this relationship will be crucial to the development of an e...
متن کاملSpecific Monoclonal Antibody Overcomes the Salmonella enterica Serovar Typhimurium’s Adaptive Mechanisms of Intramacrophage Survival and Replication
Salmonella-specific antibodies play an important role in host immunity; however, the mechanisms of Salmonella clearance by pathogen-specific antibodies remain to be completely elucidated since previous studies on antibody-mediated protection have yielded inconsistent results. These inconsistencies are at least partially attributable to the use of polyclonal antibodies against Salmonella antigen...
متن کاملCharacterization of the receptor-ligand pathways important for entry and survival of Francisella tularensis in human macrophages.
Inhalational pneumonic tularemia, caused by Francisella tularensis, is lethal in humans. F. tularensis is phagocytosed by macrophages followed by escape from phagosomes into the cytoplasm. Little is known of the phagocytic mechanisms for Francisella, particularly as they relate to the lung and alveolar macrophages. Here we examined receptors on primary human monocytes and macrophages which medi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 91 شماره
صفحات -
تاریخ انتشار 2013